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or 

IF(H) [ = I F ( - H )  I and go(H) = - go(H) + 27rHS, (6b) 

i.e., if the center of symmetry does not coincide with the origin 
of the structure, the structure factors are affected by a phase 
shift of exp(27riHS). Since the basis is fixed, H = (h, k,/) does 
not change. The structure factors, however, differ with respect 
to the enantiomorphic pairs. 

The space groups of enantiomorphic structures are 
merohedral space groups that give rise to ambiguities with 
respect to handedness (Hahn & Klapper, 1992). To resolve 
these ambiguities, a suitable property, derivable from X-ray 
diffraction data, is needed (Burzlaff & Htimmer, 1988). This 
property can be expressed by a set of structure-factor moduli 
affected by anomalous dispersion or by a set of suitable triplet 
phases, as is shown below. 

Before discussion of the triplets, it is convenient to 
discuss the implications connected with space groups 
of enantiomorphic structures and their normalizers. For 
enantiomorphic structures, two cases may be distinguished: 

(i) The space group of an enantiomorphic structure is mapped 
onto itself, i.e. it does not 'feel' the enantiomorphic property. 
All space groups of this type have a normalizer (Euclidean or 
affine) that has a center of symmetry. Thus, it is convenient to 
use a center of symmetry of the normalizer for the mapping of 
the enantiomorphs onto each other (see above). 

(ii) The space group of an enantiomorphic structure is 
mapped onto another so-called enantiomorphic space group. 
In this case, the normalizers are noncentrosymmetric groups. 
Inspection of the eleven pairs of enantiomorphic space groups, 
however, shows that they can be mapped onto each other by a 
center of symmetry placed in the origin, if the standard setting 
of International Tables for Crystallography (1992) is used. 

Restrictions and special relations for structure-factor phases 
of enantiomorphic structures due to symmetry are treated 
explicitly by Koch (1986) (see also Koch & Fischer, 1992). 

After this discussion, it can easily be seen that suitable 
triplet phases resolve the enantiomorphic ambiguity. By (6b), 
the following relations hold for any triplet H, K, - K - H  with 
its triplet phase #(H, K) = go(H) + go(K) + go( -K-H) :  

#(H, K) = go(H) + go(K) + qo ( -K-H)  

= - go(H) - go(K) - go(- K -  H) 
+ 27r[H + K - (K + H)]S 

= - #(n ,  K); (7) 

thus, the experimental observation of ~(H, K) is equivalent to a 
determination of absolute structure. As was shown by Hiimmer, 
Weckert & Bondza (1989) for benzil, suitable triplets can be 
found. 
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Abstract 

Two figures of merit for the selection of correct phase sets 
from a number of possible or trial phase sets are defined: 
(1) based on the criterion that significantly negative points 
should be sparse in electron-density maps; and (2) based 
on comparison of electron-density histograms with the 
theoretically expected histogram [Lunin (1993). Acta Cryst. 
D49, 90-99]. It is shown that both figures of merit are 
useful for judging random phase sets and useless for phase 
sets that originate from direct-methods procedures such as 
symbolic addition or tangent refinement. 

Introduction 

The first equation employed for direct phase determina- 
tion, the inequality of Harker & Kasper (1948), is based on 
the non-negativity criterion: the electron-density function 
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must be zero or positive everywhere. The most important 
equations used in direct-methods procedures, however, 
are the triple-phase relationship and the tangent formula. 
They were derived from statistical considerations (e.g. 
Hauptman & Karle, 1953) and related to the Sayre (1952) 
equation, and are based on atomicity: the electron-density 
function consists of peaks (at discrete points) in otherwise 
almost empty space. We investigated the use of these two 
basic principles, non-negativity and atomicity, as figures of 
merit for trial phase sets, especially when a large number of 
phase sets has been generated. 

The non-negativity criterion 

The non-negativity criterion is not as powerful as atomicity 
(for a discussion regarding this topic, see Navaza & 
Navaza, 1992) but as it is not explicitly used in most 
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direct-methods procedures it can play a role in providing a 
figure of merit for the quality of a phase set. Define 

1 

G = f f f  min[p(x,y,z), O]dxdydz, 
x y z = O  

where p(x,y,z) is the electron-density calculated for a given 
phase set using a limited set of reflections hkl. A correct set 
of phases should lead to an electron-density map with no 
significantly negative peaks or regions. G is negative for 
any truncated data set (with limitations on sin 0 and IE[). 
For an incorrect set of phases, however, G will be more 
negative than expected for a correct set. Thus, the best 
phase sets are expected to be among the phase sets that 
have the least-negative G values. 

The atomieity criterion 

The concept of atomicity is represented by the shape of the 
function v(t), which is usually called the electron-density 
histogram (Zhang & Main, 1990; Lunin, 1993). v(t) is the 
relative frequency of finding a given value of t as a 
function of t, where t represents a small interval in the 
electron-density function p(x,y,z). The histogram calcu- 
lated for a given phase set, denoted v~(t), is compared with 
the theoretical functions Vth(t), which is the histogram 
predicted for the structure at hand, using the same reflec- 
tion set. The predicted histogram for a small structure is 
obtained using the calculated phases of a generated model 
structure with the same composition as the true structure 
and with realistic geometrical features (such as interatomic 
distances). As a simple figure of merit, we define 

H =  f [vc(t)- Vth(t)]2dt 
t = - - o o  

[Lunin (1993), equation (14) with weights w = 1]. The best 
phase sets are expected to be among the phase sets that 
have the smallest H values. 
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Fig. 1. Histograms for three phase sets. [] V~h(t) for the correct set 
(~ot~c); © Vc(t) for an incorrect MULTAN phase set, A~o = 86°; 
• vc(t) for a phase set with large random errors, A~0 = 90 °. 

Table 1. Figures of merit for different phase sets (arbitrary 
scale) 

Pha se  set d~o (o) G H 

Correct phases (~ .~)  0 - 4 8  - -  
'Good '  M U L T A N  results 21 - 56 42 
'Bad' M U L T A N  results 86 - 54 43 
Correct phases + random errors 20 - 54 19 
Correct phases + random errors 45 - 58 62 
Correct phases + random errors 90 - 6 3  112 

Sampling the electron-density function 

The two figures of merit, G and H, require an evaluation of 
electron densities at a limited number of points (x,y,z). 
Test runs have shown that about 500 points usually are 
enough to obtain reliable approximations of G and H. 

An efficient sampling strategy is to overlay the unit cell 
with a grid that is incommensurate with respect to the 
unit-cell dimensions. These grid points are defined by 

x = al + n~b~, nx = 1,2,...,mx 

y=a2+nrb2,  % =  1,2 ..... my 

Z = a3 + nzb3, nz = 1 ,2 , . . . ,mz ,  

where ai and bi (i = 1, 2, 3) are chosen such that grid points 
neither coincide with special positions nor are mutually 
related by the space-group symmetry. The first condition 
prevents atoms at special positions disturbing the statistics, 
and the second condition ensures that the symmetry of the 
Fourier synthesis does not lead to redundant sampling 
points. The Fourier summations are evaluated for these 
grid points, using all reflections for which phases ~(hkl) 
are given or known. 

Test results 

Test results are presented for one compound [C15HI6N2-  

O2S, P21212~, Z = 4  (Noordik, Beurskens, Ottenheljm, 
Herscheid & Tijhuis, 1978)]. The 1684 structure factors 
were input to MULTAN (Main, 1985) and output reflec- 
tion data sets consisting of 230 reflections with the largest 
[El values were used for the test runs presented in Table 1 
and Fig. 1. As Fourier coefficients, we used the observed 
structure factors with phases as indicated in the table. The 
quality of a phase set is expressed by the average phase 
error: 

where ~tr~e are the phases calculated from the known 
structural parameters and ~0 is the nearest (mod 360 °) to 
~Ptr~¢. Other phase sets for this structure and tests with 
other structures led to similar results. 

Concluding remarks 

As expected, the tangent refinement leads to good and bad 
phase sets all showing 'atomicity' and the figures of merit 
G and H cannot distinguish between good and bad. On the 
other hand, G and H can be used as early figures of merit 
in 'random-phase' procedures, prior to the more  time- 
consuming tangent refinements. More experience is needed 
for optimization of the procedures. 
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Abstract 

A check of the tables in the paper by W'flson [Acta Cryst. 
(1993), A49, 795-806] has revealed errors in three of them 
and the use of outdated symbols in a fourth. 

Table 4. In the column 'Tending to antimorphism', 
the entry P42cm ° occurs twice. The second entry should 
be P42nra °. P4mc ° should be P42mc ° and two more 
entries, P4/mnc ° and P42/nnra °, should be added to this 
column. 

Table 6. The entry for the nonexistent space group P63cc ° 
should be deleted. 

Table 7. Id~t should be la3t. The row for the arithmetic 
crystal class 432P should read: 

I 432P [ "'" [ *P432 I P4~32 [ P41,332t I "'" [ 

Table 15. Space groups in the geometric classes m3 and 
ra3m now retain the overbar in their standard symbols. The 
seven space groups in these classes in Table 15 should thus be 
printed as Ira3, Pa3, la3, Pn3n, Pn3m, Fd3m and Ia3d. 

All information is given in the Abstract. 

Books Received 

The following books have been received by the Editor. Brief and generally uncritical notices are given of works of marginal 
c~stallographic interest;, occasionally, a book of fundamental interest is included under this heading because of difficulty in 
finding a suitable reviewer without great delay. 
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Time-of-flight diffraction at pulsed neutron sources. Edited 
by JAMES D. JORGENSEN and ARTHUR J. SCHULTZ. Pp. v + 117. 
Buffalo: American Crystallographic Association, 1994. Price 
US $25.00. ISBN 0-937140-38-4. Volume 29 of the Transac- 
tions of the American Crystallographic Association, the book 
contains the proceedings of a symposium, held at the annual 
meeting of the ACA at Albuquerque, New Mexico, in May 
1993, dealing with time-of-flight experiments and instrumenta- 
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tion at pulsed spallation neutron sources in the United States, 
Japan and the United Kingdom. An editors' preface is followed 
by transcripts of 11 symposium presentations. The opening 
review, by Jorgensen, points out that 'the effective fluxes of 
(pulsed and reactor) sources are now nominally equivalent for 
most diffraction experiments' and looks forward to increasing 
fluxes from the new planned generation of pulsed sources, 
which would make possible 'qualitatively new capabilities in 
neutron scattering'. The book is available from the Polycrystal 
Book Service, PO Box 3439, Dayton, OH 45401, USA. 
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